Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although generically expressing empathy is straightforward, effectively conveying empathy in specialized settings presents nuanced challenges. We present a conceptually motivated investigation into the use of figurative language and causal semantic context to facilitate targeted empathetic response generation within a specific mental health support domain, studying how these factors may be leveraged to promote improved response quality. Our approach achieves a 7.6% improvement in BLEU, a 36.7% reduction in Perplexity, and a 7.6% increase in lexical diversity (D-1 and D-2) compared to models without these signals, and human assessments show a 24.2% increase in empathy ratings. These findings provide deeper insights into grounded empathy understanding and response generation, offering a foundation for future research in this area.more » « lessFree, publicly-accessible full text available July 27, 2026
-
Recent research highlights the importance of figurative language as a tool for amplifying emotional impact. In this paper, we dive deeper into this phenomenon and outline our methods for Track 1, Empathy Prediction in Conversations (CONV-dialog) and Track 2, Empathy and Emotion Prediction in Conversation Turns (CONV-turn) of the WASSA 2024 shared task. We leveraged transformer-based large language models augmented with figurative language prompts, specifically idioms, metaphors and hyperbole, that were selected and trained for each track to optimize system performance. For Track 1, we observed that a fine-tuned BERT with metaphor and hyperbole features outperformed other models on the development set. For Track 2, DeBERTa, with different combinations of figurative language prompts, performed well for different prediction tasks. Our method provides a novel framework for understanding how figurative language influences emotional perception in conversational contexts. Our system officially ranked 4th in the 1st track and 3rd in the 2nd track.more » « less
-
null (Ed.)Learning invariant representations is a critical first step in a number of machine learning tasks. A common approach is given by the so-called information bottleneck principle in which an application dependent function of mutual information is carefully chosen and optimized. Unfortunately, in practice, these functions are not suitable for optimization purposes since these losses are agnostic of the metric structure of the parameters of the model. In our paper, we introduce a class of losses for learning representations that are invariant to some extraneous variable of interest by inverting the class of contrastive losses, i.e., inverse contrastive loss (ICL). We show that if the extraneous variable is binary, then optimizing ICL is equivalent to optimizing a regularized MMD divergence. More generally, we also show that if we are provided a metric on the sample space, our formulation of ICL can be decomposed into a sum of convex functions of the given distance metric. Our experimental results indicate that models obtained by optimizing ICL achieve significantly better invariance to the extraneous variable for a fixed desired level of accuracy. In a variety of experimental settings, we show applicability of ICL for learning invariant representations for both continuous and discrete protected/extraneous variables. The project page with code is available at https://github.com/adityakumarakash/ICLmore » « less
-
null (Ed.)Algorithmic decision making based on computer vision and machine learning methods continues to permeate our lives. But issues related to biases of these models and the extent to which they treat certain segments of the population unfairly, have led to legitimate concerns. There is agreement that because of biases in the datasets we present to the models, a fairness-oblivious training will lead to unfair models. An interesting topic is the study of mechanisms via which the de novo design or training of the model can be informed by fairness measures. Here, we study strategies to impose fairness concurrently while training the model. While many fairness based approaches in vision rely on training adversarial modules together with the primary classification/regression task, in an effort to remove the influence of the protected attribute or variable, we show how ideas based on well-known optimization concepts can provide a simpler alternative. In our proposal, imposing fairness just requires specifying the protected attribute and utilizing our routine. We provide a detailed technical analysis and present experiments demonstrating that various fairness measures can be reliably imposed on a number of training tasks in vision in a manner that is interpretable.more » « less
An official website of the United States government

Full Text Available